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Department of Artificial Intelligence, Eötvös Loránd University, Pázmány Péter stny 1/A,
1117 Budapest, Hungary; foauaai@inf.elte.hu (A.F.); lorincz@inf.elte.hu (A.L.)
* Correspondence: fenech@inf.elte.hu

Abstract: This work presents BlinkLinMulT, a transformer-based framework for eye blink detection.
While most existing approaches rely on frame-wise eye state classification, recent advancements in
transformer-based sequence models have not been explored in the blink detection literature. Our
approach effectively combines low- and high-level feature sequences with linear complexity cross-
modal attention mechanisms and addresses challenges such as lighting changes and a wide range of
head poses. Our work is the first to leverage the transformer architecture for blink presence detection
and eye state recognition while successfully implementing an efficient fusion of input features. In
our experiments, we utilized several publicly available benchmark datasets (CEW, ZJU, MRL Eye,
RT-BENE, EyeBlink8, Researcher’s Night, and TalkingFace) to extensively show the state-of-the-art
performance and generalization capability of our trained model. We hope the proposed method can
serve as a new baseline for further research.

Keywords: eye blink detection; classification; deep learning; multimodal fusion; transformers

1. Introduction

Detecting eye blinks is a challenging problem that can be used to solve a number of fa-
cial analysis tasks; it can reveal deep fake manipulation, detect driver drowsiness, measure
the level of attention and eye fatigue during task performance, and health disorders, among
others. Most approaches depend on face recognition and frame-wise eye state classification,
even with the rise of transformer-based sequence models in many other research areas.
However, these methods may struggle to handle cases where blinks occur for only a few
frames or where input data are noisy or incomplete.

The machine learning and computer vision communities are focused on using different
visual representations to tackle the blinking detection problem. Three categories emerged
in the last decade: (i) feature-based methods use predetermined higher-level features
like iris and eye landmark distances, (ii) appearance-based methods utilize low-level eye
representations (e.g., RGB texture) and then adopt learning algorithms to classify eye states,
and (iii) motion-based methods use input representations that encode motion information
or a sequence of eye-related features to determine eye states.

1.1. Feature-Based Methods

Chen et al. [1] proposed an eye blink detection and gaze estimation method. After the
eyes are detected, several image preprocessing procedures are performed to eliminate the
noise caused by the changes in normal-light conditions and reflections: pixel gradients,
valley-peak field, fitted parabolas, iris mask, and pupil center landmark are calculated,
among others. Using an adaptive Starburst extraction algorithm, their proposed technique
correctly identifies both the iris and limbus features in various lighting conditions, and
then the aspect ratio of the bounding box that contains the iris mask is computed over time.
Large values indicate blink events while small values are determined as open-eye states.

Phuong et al. [2] presented a blink detection method based only on eye landmarks.
Eye Aspect Ratio (EAR) is calculated from the eye landmarks, and, based on the max and
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current EAR values, a dynamic threshold is applied for each participant, which determines
the eye blink state.

In Ref. [3], Kuwahara et al. estimated the eye fatigue sensitivity from detected sponta-
neous blinks. They applied a simple moving average filter over the EAR values, then applied
Eye Aspect Ratio Mapping to further reduce the noise caused by irregular movements, such
as looking down. First, they classified blinks, and then a strong correlation is presented in the
experimental results between the median spontaneous blink rate and the time between the
objective estimation of eye fatigue and the subject’s awareness of eye fatigue.

Kraft et al. [4] calculated relative EAR, which is the current EAR divided by the
maximum of the last n = 2 ∗ FPS values. Then, a set of conditions must be met to select
blink candidates, which are classified by applying a threshold.

1.2. Appearance-Based Methods

Appearance features are extracted using two branches of Deep Neural Networks
(DNNs) in [5]. Convolutional layers extracted features from the eye patch; meanwhile,
another DNN model extracted the characteristics of the eye patch vector and reduced the
features by use of the fully connected layers directly. Given their different structures, the
proposed DCNN and DNN are combined to build a deep integrated model, called DINN. A
transfer learning strategy was applied to extract effective abstract eye features and improve
the classification capability on small-sample datasets.

In the work of [6], cropped eyes from RGB texture were used as an input to a VGG16
trained from scratch for binary eye blink state classification. Their main contribution was
the introduction of a new blink dataset called mEBAL. The samples are recorded with
an Electroencephalography (EEG) band, Near Infrared (NIR), and RGB cameras, which
further improve on previous datasets. The authors showed that using RGB texture without
temporal patterns can lead to great performance if there are quality data to train on.

The RT-GENE dataset [7] is used for gaze estimation in natural environments, but
Cortacero et al. [8] extended the pipeline, so gaze estimation and blink detection are
integrated into a unified network. They also published the RT-BENE dataset, which
contains cropped close eye patches from RT-GENE with eye state annotations. Their dataset
covers a wider range of camera–subject distances and head poses, which is beneficial for
training DNNs and led to further improving the state-of-the-art results.

EyeNet [9] is proposed for binary eye state classification. They evaluated the model
under different conditions (lighting, reflection, appearances, and devices) and also show
some improvements over other methods (e.g., [5]). While they have shown cross-database
evaluations, we will extend this with additional databases and show how to produce better
results on several databases at the same time.

In the work of [10], a robust, real-time pipeline with auxiliary models was proposed
considering rotation compensation and head pose orientations. The CNN produced consis-
tently better results than the support vector machine method in their experiments.

Recently, an additional CNN called 4D was presented in [11]. It is based on the VGG19
architecture with modified hyperparameters. The network is evaluated on the MRL dataset
and presented better results than others [12,13] in the literature.

1.3. Motion-Based Methods

Motion vectors are applied to blink detection in [14], and then the research is
extended in [15]. In the latter, motion vectors are obtained by applying Gunnar–Farneback
tracking in the eye region. Eyeblink states are determined by providing a normalized
average motion vector with standard deviation and time constraints to a state machine.
Motion information is calculated between two frames; in later works, multiple timestamps’
representation is used instead.

In the work of [16], appearance and motion information are simultaneously utilized.
Local Binary Pattern (LBP) visual descriptor is extracted to represent the local eye region.
The difference between the LBPs from two consecutive frames is used to encode the motion
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characteristics of eye blinks. The combination of appearance and movement features had a
good impact on the final performance; they are concatenated as the input of LSTM. To deal
with the multiple temporal cases, a multi-scale LSTM (MS-LSTM) model was proposed,
which uses the outputs of the last T LSTM units jointly by concatenation.

More recently, [17] introduced an approach that is divided into two main phases. First,
face detection and eye localization are implemented. Then, within the second phase, eye
blink detection is conducted via moving-windowed SVD using pixel energy, and eye blink
verification is performed via a 2D Pyramidal Bottleneck Block Network (PBBN), which
produces the final predictions. They presented improved performance compared to [6,16]
by using temporal patterns from a simple energy-based feature.

Ref. [18] utilized a Long-term Recurrent Convolutional Network (LRCN) for eye
blinking detection to expose deep fake videos. They estimated facial landmarks, and, after
alignment, the eye region is cropped. The visual feature extractor is a VGG16, while the
dynamic information was captured by an LSTM. While the mean resting blinking rate is
17 blinks/min or 0.283 blinks per second ( https://www.ncbi.nlm.nih.gov/pubmed/9399231
, accessed on 25 July 2023), during a conversation, this rate increases to 26 blinks/min and
decreases to 4.5 blinks/second while reading. Their method is focused on the detection of
eye blinking in the videos, which is a physiological signal that is not well presented in the
synthesized fake videos. The output of the LRCN model is the predicted probability of the
binary eye state.

Building upon LRCN, in [19], Eye-LRCN was proposed as a novel approach to blink
detection and blink completeness detection. The Siamese architectures have proven effec-
tive for other problems with high class imbalance [20]. Since most of the eye blink databases
available today are class-imbalanced, there are several improvements over the baseline
model proposed by Li et al.; e.g., they applied a Siamese architecture for CNN training and
they used a bidirectional LSTM instead of a unidirectional LSTM.

1.4. Contribution

Appearance-based methods can extract richer information than feature-based methods.
The feature-based method cannot be applied if the quality of input data is not good enough,
and face-, landmark-, or iris detectors fail. The method we present tries to complement the
literature by combining the above categories.

In this work, we propose a fast transformer-based framework for eye blink detection
that can effectively combine low- and high-level feature sequences considering several
challenges, such as lighting changes, and a variety of head poses, and also utilizes motion
information from sequences of the aforementioned features. We present a modified multi-
modal transformer with linear attention (LinMulT) [21], which considers multiple inputs,
such as RGB texture, iris and eye landmarks, ear, and head pose angles. To our knowledge,
this is the first work to use transformer architecture and implement an efficient fusion
of input features, including head pose angles. The source code for our implementation
is available (code available at https://github.com/fodorad/BlinkLinMulT, accessed on
25 July 2023).
Our contributions are listed as follows:

• We propose a novel transformer-based blink detection model called BlinkLinMulT
that efficiently combines low- and high-level features from video sequences using
linear complexity attention mechanisms.

• Cross-dataset evaluations are performed to quantify the robustness of BlinkLinMulT
on unseen samples and it is found that a single network trained on a union of datasets
improves the results obtained on all datasets separately.

• We present a feature fusion ablation study and show that the proposed method works
well even on extreme head poses.

• The proposed approach is evaluated on blink presence detection and eye state recognition
tasks and multiple public benchmark datasets. The results obtained are similar to or better
than those provided by state-of-the-art models on the respective tasks and databases.

https://www.ncbi.nlm.nih.gov/pubmed/9399231
https://github.com/fodorad/BlinkLinMulT
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The rest of the paper is organized as follows: Section 2 describes the eye blink detection
pipeline, the proposed backbone, and sequence models developed for our experiments.
The image and video datasets used in our experiments are introduced in Section 3, and
then Section 4 presents the performances of our models under different conditions and
experimental settings. Finally, closing remarks and future work are outlined in Section 5.

2. Materials and Methods
2.1. Eye Feature Extraction

Utilizing the head pose information is a crucial aspect in various scenarios, particularly
during conversations. The participants tend to lower their gaze toward the table or look
down at themselves, causing the top eyelids to become visible. This subtle cue can be
challenging for a CNN to differentiate as it operates on frames. Thus, utilizing sequence
models becomes essential as they can benefit from temporal information. These cases can
be detected or learned if the network has access to the head pose angles predicted by, e.g.,
3DDFA_V2 [22]. Additionally, visualizing head pose angles could potentially provide
valuable insights to better understand the dynamics of these sessions.

Aside from head pose estimation, 3DDFA_V2 is used for facial landmark prediction on
images, and for determining the location of the eyes. The eye patches are extracted and resized
to 64 × 64 pixels. For fine eye landmark prediction, we used MediaPipe Face Mesh [23], which
is a residual neural network that can predict dense coordinates even if the face is partially
occluded. Then, we calculated Eye Aspect Ratio (EAR) introduced in [24]. MediaPipe Iris [25]
is a tiny neural network that predicts 5 landmarks in 2D: the pupil center, and 4 points of the
outer iris circle. For more high-level features, we calculated the iris diameters and the distances
between the pupil and the eyelid landmarks. The list of features with the corresponding
dimensions is in Table 1.

Table 1. Features used in the experiments. The second and third column indicate the inputs from
which the given feature was calculated and the dimensions of the features.

Feature name Source Dimension

RGB eye patch RGB face crop (64, 64, 3)
Head pose angles RGB face crop (3,)

Face Mesh landmarks RGB eye patch (72, 2)
Iris landmarks RGB eye patch (5, 2)
Iris diameters Iris landmarks (2,)

Eyelid-pupil distances Iris and Face Mesh landmarks (2,)
Eye Aspect Ratio Face Mesh landmarks (1,)

2.2. Backbone Models

EyeNet [9] is a CNN designed for classifying eye states. It comprises convolutional,
max pooling, and global average pooling layers with fully connected layers. The model
performed well on datasets like CEW, ZJU, and MRL; therefore, we considered using it in
our experiments.

We also incorporated ResNet50 and DenseNet121 backbones in our experiments as
they were found to be the best-performing models in [8]. The aforementioned CNNs are
pretrained on ImageNet.

Motivated by recent literature, we included Contrastive Language-Image Pre-Training
(CLIP) models in our experiments to assess their effectiveness [26]. The utilized visual
backbones are a modified ResNet50 and a Vision Transformer (ViT-B/16).

We fine-tuned and tested all backbones to determine the optimal feature extractor
backbone for our proposed sequence model.

2.3. Proposed Method

We propose a fast multimodal transformer, called BlinkLinMulT, shown in Figure 1, for
blink presence detection and eye state recognition. The architecture is motivated by Tsai et al. [27];
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however, we replaced the quadratic attention modules with linear versions [28], providing
similar performance [21] while being easier to train.

Input embeddings indicated by darker striped columns can be features derived from
the raw data or the outputs of a pre-trained deep model. We extracted α embeddings from
the RGB texture using one of the backbone models introduced in Section 2.2. Head pose
and landmarks are predicted with deep networks like 3DDFA_V2, MediaPipe Iris, and Face
Mesh, while the β embeddings are generated by a subnetwork of fully connected layers.

Cross-modal transformers translate one information source (e.g., β, here associated
with the landmark features) to another one (e.g., α, here associated with the RGB texture)
by learning keys and values of modality β and the queries from the α modality. Both α→ β
and β → α are fused by an individual cross-modal transformer. A transformer network
with self-attention enhances the information within the sequence branch-wise. Then, the
output sequences of the modality branches are concatenated in the feature dimension and
fused by a self-attention transformer. A linear attention mechanism is used within the
networks to increase efficiency by reducing computational resources, i.e., time and memory.

Finally, we used a fully connected layer on top of the transformers, which is used
for two tasks: (i) by only considering the maximum of the logits within the sequence, a
sigmoid is applied to determine whether blinking is present in the sequence; (ii) sigmoid is
applied to the frame-wise estimates to determine eye states. The outputs of the network
are logits; sigmoid is applied within the loss function while training, and during inference.

Presence

Blink
event

Eye state

FC

High-level 
subnetwork

Headpose
Landmark features

Low-level 
subnetwork

RGB embedding

Cross-modal

transformer

Self-attention
transformer 

    target modality branch

    target modality branch

Self-attention
transformer 

Cross-modal

transformer

Self-attention
transformer 

Max

RGB
eye patches

BlinkLinMulT

Figure 1. BlinkLinMulT: a multimodal transformer architecture for blink presence detection and
frame-wise eye state recognition.

2.4. Blink Estimation Pipeline

A series of steps are involved in blink estimation. Initially, the frames are extracted
from the video. In our experiments, the monitored person’s face bounding box is annotated;
otherwise, face detection and tracking are required. The length of a blink is 0.1–0.4 s/blink
(: http://bionumbers.hms.harvard.edu/bionumber.aspx?id=100706&ver=0 , accessed on
25 July 2023); therefore, we chose the analyzing window to cover only 0.5 s. The 3DDFA_V2
model is applied to close face crops to obtain a sequence of head poses. Eye patches are
then separately processed to extract high-level features like iris, pupil, and eye landmarks,
which are used for EAR, iris diameter, and eyelid–pupil distance calculations. Furthermore,
a backbone CNN extracts deep hidden representations of the RGB eye patches. These sets
of features are utilized as inputs to a linear multimodal transformer that estimates blinks
for each eye independently. A single blink annotation is defined for every single image;
therefore, we consider estimations both from the left and right eyes. The network logits
are averaged, and a sigmoid function is applied to make a final decision to obtain the final
blink presence score for the sequence, and frame-wise eye state scores for determining
the position of the blink event within the sequence. The components are organized into a
pipeline, which can be seen in Figure 2.

http://bionumbers.hms.harvard.edu/bionumber.aspx?id=100706&ver=0
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Figure 2. Overview of the blink estimation pipeline.

3. Datasets

The architectures detailed in Section 2.2 have been trained and evaluated on four
image datasets and five video datasets, as detailed next in Sections 3.1 and 3.2.

3.1. Image Datasets

The Closed Eyes in the Wild (CEW) dataset was created by Song et al. [29]. Close face
crops are collected from 2423 subjects; 1192 subjects with both eyes closed are collected
directly from the Internet, and 1231 subjects with eyes open are selected from the Labeled
Face in the Wild (LFW [30]) database. The face images are resized to 100 × 100 pixels. We
used 3DDFA_V2 to crop both eye regions based on the landmarks, and then the patches
are resized to 64 × 64 pixels. The CEW dataset does not have pre-defined training and test
images; therefore, similar to others in the literature, we employed a 10-fold cross-validation
(CV) scheme to measure the performance of backbone models.

Song et al. [29] cropped the original ZJU eye blink dataset [31] images to extract
eye patches and expanded the initial set of images by rotation, blurring, the addition of
Gaussian noise, and contrast adjustment. The original image resolution is relatively low
(320 × 240 pixels), and the extracted eye patches are 24 × 24 pixels. We resized the images
to 64 × 64 pixels, which is a common size among the used datasets.

The MRL Eye dataset [32] was collected from thirty-seven participants (thirty-three
men and four women). This dataset contains 84,898 infrared images in low and high
resolution captured by different sensors like RealSense, IDS, and Aptina. The images are
captured in various lighting conditions (the annotations are “bad” and “good”) and under
three reflection modes based on the size of reflections (annotations are “none”, “small”,
and “high”). There are also annotations for the eye patches that are with or without glasses.
The eye state property contains binary information about two eye states.

The videos on the RT-GENE dataset [7] were recorded using a Kinect v2 RGB-D camera
to provide RGB images at 1920 × 1080 resolution. Eye patches are extracted from the face
images and then annotated and published as RT-BENE [8]. However, to estimate landmarks
around the eyes and head pose, we used the full-face images from RT-GENE and the blink
annotation from RT-BENE. We denote the subset, where both the image and the annotation
were available, as RT-BENEimg in our experiments. There are 16 participants in this dataset,
and, following the authors’ split, subjects with IDS 0, 14, 15, and 16 are used as the test set.

3.2. Video Datasets

The multimodal sequences of RT-BENEseq are created from RT-BENEimg. The face
images with blink states, among other frame-wise features, are stacked along the time
dimension to form sequences.

The EyeBlink8 dataset contains eight videos that were recorded in a home environment.
Four participants are sitting in front of the camera. There are 408 eye blinks on 70,992
annotated frames with a resolution of 640 × 480.

TalkingFace is a single 200-s-long video stream, which is created to evaluate facial
landmarks detection precision. The video is captured with 25 FPS and a resolution of
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720 × 576, and it contains a single participant talking in front of the camera. Annotations
for 61 eye blinks are also available, which were used in several related works besides their
small size.

The Researcher’s Night dataset was collected during an event called Researcher’s
Night 2014. People were asked to read an article on a computer screen or blink while
being recorded. The authors of the dataset collected 107 videos with 223,000 frames of
different people with various head poses and cluttered backgrounds. There are two subsets:
Researcher’s Night 15 (RN15) and Researcher’s Night 30 (RN30) that are captured with
15 and 30 FPS with a resolution of 640 × 480.

4. Results and Discussion
4.1. Training Strategy and Evaluation Metrics

The models were fine-tuned using Adam with decoupled weight decay regulariza-
tion (AdamW [33]). The initial learning rate was set to 1× 10−3, and L2 regularization to
5× 10−4. The learning rate is multiplied by 0.1 if no improvement is observed in the validation
loss for a period of 10 epochs. Binary cross-entropy is used as the loss function between the
frame-wise prediction and the corresponding ground truth for all experiments. We used
64 as the batch size. The networks are trained using a single NVIDIA RTX A4000 with
16 GB VRAM. The CNN backbones were trained for 310 epochs on the image datasets, whilst
BlinkLinMulT was trained for 50 epochs using samples extracted from the video datasets.
To handle the unbalanced class distribution of the datasets (Table 2), we calculated the class
weights per dataset in advance, and oversampling is achieved by weighting the loss itself.
Due to the unbalanced nature of the datasets, we chose the F1 score as the main performance
metric; however, precision (P), recall (R), and average precision (AP) are also calculated.

Table 2. Overview of the datasets.

Type Dataset # Samples
Samples for

Training and Validation Samples for Testing % Blink
in Test Set# Open Eyes # Blinks # Open Eyes # Blinks

Images

CEW 2423 1050 1009 182 182 50
ZJU 8984 5770 1574 1230 410 25
MRL 84,898 34,618 33,830 8334 8116 49

RT-BENEimg 107,169 72,281 2847 30,347 1694 4

Sequences

RT-BENEseq 6969 4356 547 1869 197 10
EyeBlink8 4616 3422 293 786 115 13

RN15 6439 2830 434 2903 272 9
RN30 11,231 5346 650 4729 506 10

TalkingFace 324 - - 263 61 19

4.2. Backbone Within-Dataset Evaluations

First, we trained and evaluated all frame-wise backbone models on the image datasets.
We report the performance in Table A1.

The CEW database is relatively small in terms of the number of samples, but it is a
popular benchmark dataset as most faces are frontal, balanced by class labels, and there
are also higher-resolution images. All backbone models performed well on this dataset
with only a slight 0.006 difference in F1 score between the worst and best models in a
10-fold cross-validation. The EyeNet results are successfully reproduced (0.990± 0.006 F1
score); however, the ResNet50 and DenseNet121 outperformed it under the same conditions
(0.994± 0.003 and 0.995± 0.002 F1 scores, respectively). The positive effect of the better
pre-training method is measured with higher-resolution images using the CLIP ResNet50
and ViT-B/16; the models achieved the highest average scores with 0.996± 0.005 and
0.996± 0.003.

The backbones performed worse on low-resolution, augmented, and noisy images of
the ZJU database. The two best-performing models are the ResNet50 and DenseNet121
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with 0.929 and 0.927 F1 scores, as well as 0.965 and 0.959 AP, respectively. CLIP backbone
variants like ViT-B/16 performed worse (with 0.915 F1 score and 0.957 AP) due to there
being less spatial context available to learn global dependencies, and a large number of
parameters can lead to overfitting on small datasets. CNNs can effectively learn local
features with fewer parameters, making them a better choice for smaller-resolution images.

The RT-BENEimg dataset contains more samples, rich in different head poses, but it
is rather unbalanced, with many more open-eye samples than blinking samples, and the
method that fills the glasses frame might introduce additional noise. The difficulty of the
database is reflected in the accuracy of the models; EyeNet achieved 0.868, followed by the
CLIP ResNet50 and ViT-B/16 with 0.870 and 0.871 F1 scores, respectively. DenseNet121
performed well with 0.883, but ResNet50 outperformed the other models by a considerable
margin with a 0.912 F1 score and 0.946 AP.

4.3. Eye Patch Resolution Dependence

CLIP backbones are underperforming, and one possible reason for this is the resizing
of low-resolution images from 64 × 64 to 224 × 224. While the information content is the
same, the larger input makes pattern recognition more difficult. To confirm this assumption,
we have trained a ResNet50 with the same hyperparameters, the only difference being in
the image dimensions, and it is denoted as ResNet50-224px in Table A1. The CNN trained
on the 224 × 224 images achieved lower performance metric scores in every case versus its
64 × 64 counterpart: 0.929 vs. 0.932 precision, 0.837 vs. 0.893 recall, 0.881 vs. 0.912 F1 score,
and 0.918 vs. 0.946 AP.

4.4. Backbone Cross-Dataset Evaluations

We also evaluated the performance of the backbone models on unseen samples. First,
all backbone models are trained on one of the datasets, then evaluated on the rest without
further fine-tuning. Metrics are calculated considering all combinations. The metrics of
cross-dataset evaluations are in Table A2. When the networks trained on the ZJU dataset
and evaluated on others, the F1 score is acceptable on the test set of the ZJU dataset, e.g.,
0.929 for the best-performing model ResNet50; the same network can only achieve 0.652 on
the CEW and 0.502 on the RT-BENEimg, showing a massive performance degradation, 30%,
and 46%, respectively. The networks in general learned better features when trained on the
CEW images (e.g., F1 score of ResNet50 is 0.717 on ZJU, 0.672 on RT-BENEimg); however,
the best cross-dataset performance can be achieved when the RT-BENEimg is used as a
training dataset. ResNet50 and DenseNet121 outperformed the other backbones by a large
margin; however, we cannot choose a clear best model based on this experiment; 0.806 and
0.851 F1 scores are achieved on ZJU, while 0.894 and 0.836 F1 scores on CEW, respectively.

As the samples of the different datasets are produced in a similar way, they differ
mainly only in diversity. Therefore, we also trained the models on the union of the datasets,
and report the metrics in Table A3. DenseNet121 utilized the extended set of samples
and achieved the best F1 scores among other metrics over all backbones. Training on the
union of the datasets improved on previous results measured in Section 4.2: the F1 scores
changed from 0.995 to 0.997 on CEW, from 0.927 to 0.933 on ZJU, and from 0.883 to 0.913
RT-BENEimg.

To verify the robustness of the DenseNet121 model, we measure the performance
using the MRL images under different conditions: one condition is whether or not the
samples have glasses, whether or not there are good or bad light conditions, and the level
of distracting reflection on the eye surface or glasses. F1 scores from four experiments
are summarized in Table 3. For both Exp-A and Exp-B, DenseNet121 has trained on
the union of the CEW, ZJU, and RT-BENEimg datasets, but, for Exp-A, we evaluated on
the whole MRL dataset, and, for Exp-B, we used the test subset of MRL, the images
belonging to participants 35 and 36. The difference between the average F1 scores of the
experiments is negligible; therefore, for Exp-C and Exp-D, we used the same holdout set.
For Exp-C, we also added samples from the MRL dataset to the previous CEW, ZJU, and
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RT-BENEimg triplet. Finally, Exp-D in the last column was evaluated for ease of comparison
with methods in the literature and for completeness; in this case, DenseNet121 was only
trained and tested on the MRL database with a 0.75–0.15–0.15 train–validation–test split;
a 0.9953 average F1 score is successfully reproduced. We observed a 3.8% degradation if we
are not fine-tuning the network using the MRL images, and also the F1 score is increased
by 2% if the MRL train set is added to the union of the training databases. We used the
DenseNet121 with the weights obtained in Exp-C as the RGB backbone model within the
proposed BlinkLinMulT.

Table 3. Performance of the DenseNet121 backbone under different settings. Exp-A: DenseNet121 is
trained on the union of the image datasets (ZJU, CEW, RT-BENEimg) and evaluated on the full MRL
dataset. Exp-B: the union of the image datasets is used for training, and only the MRL test set is used
for evaluating the network. Exp-C: the union of image datasets is expanded with the MRL train and
validation images, and the MRL test set is used for measuring the performance. Exp-D: the network
is trained using the MRL train and validation samples, and results are calculated on the MRL test set.

Condition F1
Exp-A Exp-B Exp-C Exp-D

With glasses 0.9518 0.9632 0.9797 0.9959
Without glasses 0.9714 0.9478 0.9742 0.9944

Good light 0.9679 0.9723 0.9838 0.9953
Bad light 0.9631 0.9469 0.9749 0.9948

No reflection 0.9727 0.9560 0.9784 0.9954
Low reflection 0.9613 0.9536 0.9934 1.0000
High reflection 0.8987 0.9574 0.9486 0.9912

Average 0.9553 0.9567 0.9761 0.9953

4.5. BlinkLinMulT Within-Dataset Evaluations

The proposed BlinkLinMulT predicts frame-wise eye state scores, which are also used
for determining the position of the blink event within the sequence, and then the blink
presence is determined and results for both tasks are reported in Table 4. The accuracy of
the blink presence estimate is better, and there may be two reasons for this: one is that,
in many cases, the start of the blink event is annotated as “closed eye” even though the
person’s eye is still open in the given frames. While the model correctly estimates “open
eye” for these frames, it may appear as an error in the table. On the other hand, although
the annotation is defined frame-wise, the decoders available today do not extract the frames
in exactly the same way, especially if there are different FPS within the video. In these cases,
some frame slips may occur, which we have not corrected manually.

Table 4. Eye state recognition and blink presence detection performances of the proposed method
BlinkLinMulT on the RT-BENEseq, EyeBlink8, RN15, and RN30 datasets.

Task Dataset p R F1

Eye state

RT-BENEseq 0.940 0.931 0.936
EyeBlink8 0.569 0.990 0.723

RN15 0.692 0.927 0.792
RN30 0.683 0.886 0.771

Presence

RT-BENEseq 0.922 0.959 0.940
EyeBlink8 0.991 1.000 0.996

RN15 0.925 0.952 0.938
RN30 0.916 0.927 0.921

4.6. BlinkLinMulT Cross-Dataset Evaluations

Similar to Section 4.4, we have carried out cross-dataset evaluations using the proposed
BlinkLinMulT model. We used the EyeBlink8, RT-BENEseq, RN15, and RN30 datasets for
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training and evaluation, and, due to its limited size, the TalkingFace is used only for
testing purposes. Table 5 is grouped by test databases for ease of reference; we experienced
improved performance when RN15 and RN30 datasets are used within training despite
their lower resolution and in-the-wild difficulty.

Table 5. Eye state recognition and blink presence detection performance of the proposed method
BlinkLinMulT during cross-dataset evaluation using the EyeBlink8, RT-BENEseq, RN15, RN30, and
TalkingFace datasets.

Train DB Test DB Pstate Rstate F1state Ppresence Rpresence F1presence

EyeBlink8 RT-BENEseq 0.139 0.462 0.213 0.313 0.746 0.441
RN15 RT-BENEseq 0.337 0.592 0.430 0.676 0.731 0.702
RN30 RT-BENEseq 0.295 0.480 0.365 0.811 0.721 0.763

RT-BENEseq EyeBlink8 0.958 0.679 0.795 0.950 0.983 0.966
RN15 EyeBlink8 0.531 0.954 0.682 0.983 0.974 0.978
RN30 EyeBlink8 0.704 0.967 0.815 0.983 0.974 0.978

RT-BENEseq RN15 0.797 0.464 0.586 0.858 0.868 0.863
EyeBlink8 RN15 0.838 0.787 0.811 0.919 0.838 0.877

RN30 RN15 0.834 0.807 0.820 0.941 0.930 0.935

RT-BENEseq RN30 0.851 0.571 0.683 0.908 0.860 0.883
EyeBlink8 RN30 0.655 0.768 0.707 0.873 0.804 0.837

RN15 RN30 0.404 0.890 0.555 0.819 0.905 0.860

RT-BENEseq TalkingFace 0.834 0.490 0.617 0.968 1.000 0.984
EyeBlink8 TalkingFace 0.961 0.805 0.876 1.000 0.984 0.992

RN15 TalkingFace 0.947 0.614 0.745 1.000 0.967 0.983
RN30 TalkingFace 0.994 0.714 0.831 1.000 1.000 1.000

In Ref. [8], their hypothesis that increased training sample size leads to an increase
in performance is accepted, while the performance barely increased by using 100% of
the RT-BENE training data instead of 75%. We extend it with a hypothesis that increased
diversity in training samples—in terms of resolution, head pose angles, and the participants’
biomarkers—leads to an increase in performance; we trained the BlinkLinMulT on the
union of the datasets. Table 6 shows that the eye state recognition and blink presence
detection performance are consistently improved compared to those experiments, where
only a single dataset is used for training. BlinkLinMulT captured the unique patterns from
all used datasets; therefore, the eye state recognition F1 score increased from 0.723 to 0.87
for EyeBlink8, 0.792 to 0.871 for RN15, and 0.792 to 0.836 for RN30. The blink presence
detection F1 score increased from 0.938 to 0.959 for RN15 and 0.921 to 0.933 for RN30.
While, in the literature, the proposed models are retrained for each dataset, our network is
trained once and performs well on all the public blink benchmark datasets.

Table 6. Eye state recognition and blink presence detection performance of the proposed method
BlinkLinMulT on the test subsets of TalkingFace, RT-BENEseq, EyeBlink8, RN15, and RN30 datasets.
The model is trained on the union of the train subsets of these datasets.

Task Train DB Test DB P R F1

Eye state

Union RT-BENEseq 0.824 0.796 0.810
Union EyeBlink8 0.782 0.979 0.870
Union RN15 0.867 0.876 0.871
Union RN30 0.890 0.787 0.836
Union TalkingFace 0.993 0.614 0.759
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Table 6. Cont.

Task Train DB Test DB P R F1

Presence

Union RT-BENEseq 0.914 0.965 0.938
Union EyeBlink8 0.991 0.991 0.991
Union RN15 0.977 0.941 0.959
Union RN30 0.966 0.901 0.933
Union TalkingFace 1.000 1.000 1.000

4.7. Comparison to the Literature

We show that our method generalizes well to different scenarios, and the performance
of our network is comparable to or surpasses the performance of state-of-the-art methods, in
Table 7. Note that TalkingFace is only used for testing, but, nevertheless, the looking-down
events are successfully recognized, while other methods make mistakes. The proposed
BlinkLinMulT excels in the blink presence detection task on all datasets. The per-frame
evaluation metrics of the eye state recognition task are slightly lower; however, this is
due to occasional frame-shifting during decoding and the fact that annotation often starts
and ends with an open eye. In these cases, although the network is not flawed, it will be
reflected in the frame-wise results during evaluation.

Table 7. Comparison of our BlinkLinMulT to the methods in the literature in the case of two tasks:
blink presence detection and frame-wise eye state recognition. The highest F1 scores per dataset and
task are shown in bold.

Database Task Method p R F1

TalkingFace Presence

[2] 0.951 0.936 0.943
[10] - - 0.950
[4] 0.983 0.934 0.958

[34] - - 0.971
[19] - - 0.979

Ours 1.000 1.000 1.000

EyeBlink8

Eye state

[35] - - 0.834
[19] - - 0.910
[8] 0.995 0.958 0.976

Ours 0.782 0.979 0.870

Presence

[10] - - 0.870
[4] 0.909 0.904 0.905

[34] - - 0.913
[19] - - 0.946
[24] 0.943 0.960 0.952
[2] 0.953 0.958 0.955

Ours 0.991 0.991 0.991

RN

Eye state
[19] - - 0.807
[8] - - 0.913

Ours 0.878 0.828 0.852

Presence
[34] - - 0.879
[19] - - 0.906

Ours 0.970 0.915 0.942

RT-BENE Eye state

[35] - - 0.529
[19] - - 0.602
[8] 0.664 0.791 0.721

Ours 0.824 0.796 0.810

4.7.1. Feature Significance

To measure the added value of the different features used in our experiments, we
trained deep networks using the input features separately and then using the different
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combinations. The F1 scores obtained on the image test subsets are in Table 8, and we
also report the metric using the video datasets in Table 9. To facilitate transparency, the
following feature groups are created:

• MediaPipe Iris landmark features (ILM): the feature set contains the iris landmarks,
iris diameters, and eyelid–pupil distances.

• MediaPipe Face Mesh landmark features (FLM): the feature set contains the eye
landmarks and eye aspect ratio.

• Head pose angles (HP): the head pose angles are highlighted independently.
• Texture (T): RGB texture contains the most information.

Based on the dimensionality of the feature set, different models are used. We evaluated
multiple hyperparameters for the networks, and report the best possible F1 metrics, that
could be obtained on the test subset of RT-BENEimg datasets in Table 8. For ILM and FLM, a
fully connected shallow network is trained. For T, the same DenseNet121 is used, reported
in Table A3. T+ILM+FLM utilizes every available high-level feature. Head pose angles are
excluded because ZJU and MRL datasets are used for training the CNN backbone; however,
it contains only eye patches, and head pose angles are not available.

The RGB texture is the richest in detail; therefore, increased performance is expected in
this case. While the iris and eye landmark features alone show fairly low performance, com-
bining them with the texture further improves the performance on RT-BENEimg compared
to texture-only evaluation (0.922 vs. 0.913 F1 scores).

Table 8. Blink presence detection performance ablation study, presenting the impact of different
features. The networks trained on the union of CEW, MRL, and RT-BENEimg datasets. The metric is
the F1 score on the individual test subsets. The highest F1 score is shown in bold.

Modality Model RT-BENEimg

ILM Dense 0.453
FLM Dense 0.595

T DenseNet121 0.913
T+ILM+FLM DenseNet121+Dense 0.922

We evaluated the effectiveness of individual and combined modalities on all video
datasets. F1 score is reported in Table 9 for the eye blink presence task. The HP, ILM, and
FLM sequences are fed to a linear self-attention transformer, denoted as LinT. ILM and
FLM landmark-based feature sets show potential when the dynamics are also utilized by
a sequence model. For sequences of RGB frames, the uni-modal version of our proposed
model, BlinkLinT, is used: LinT is learning the dynamics of DenseNet121 hidden represen-
tations. The model achieved high F1 scores on multiple datasets, showing the importance
of low-level RGB texture over high-level features.

While the head pose angles do not hold information about the blinking event, the
combination with the texture and other high-level features helps in extreme cases. Our
proposed model, BlinkLinMulT, utilizes both low- and high-level information sources
effectively. There are negligible differences between the different versions of the proposed
model, but we would like to highlight that, in the last case, where all feature sequences
are used, the problematic extreme blinks when the person looks down are detected in
TalkingFace, achieving a 1.0 F1 score in the blink presence detection task.
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Table 9. Blink presence detection performance ablation study, presenting the impact of different features.
The networks trained on the union of RT-BENEseq, EyeBlink8, RN15, and RN30 datasets. The metric is
the F1 score on the individual test subsets. The highest F1 scores per dataset are shown in bold.

Modality Model RT-BENEseq EyeBlink8 RN15 RN30 TalkingFace

HP LinT 0.267 0.227 0.303 0.276 0.529
ILM LinT 0.814 0.978 0.869 0.860 0.992
FLM LinT 0.761 0.974 0.925 0.867 1.000

T DenseNet121 0.779 0.887 0.645 0.620 0.976
T BlinkLinT 0.922 0.991 0.946 0.920 0.992

T+HP BlinkLinMulT 0.962 0.991 0.973 0.929 0.992
T+FLM+ILM BlinkLinMulT 0.947 0.991 0.958 0.939 0.992

T+HP+FLM+ILM BlinkLinMulT 0.938 0.991 0.959 0.933 1.000

4.7.2. Frame-Wise Model versus Sequence Model

To show the importance of modeling the dynamics of motion, we evaluated our best
backbone model, DenseNet121 (Table A3), per frame on sequences of the video datasets.
Then, similar to the BlinkLinMulT pipeline, we performed max aggregation within the
sequence to determine the presence of blinking for both eyes. In Table 9, the transformer-
based sequence modeling shows superiority over frame-wise estimations.

4.7.3. Head Pose Angle Dependence

We investigated the impact of head pose on the blink presence detection performance
of BlinkLinMulT and report the F1 scores in Figure 3 and Accuracy, AP F1 scores in Table A4.
The union of RT-BENEseq, EyeBlink8, RN15, RN30 test subsets, and the samples from the
TalkingFace video is used to include more diverse head poses. For each sequence, the means
of frame-wise head pose estimations are calculated. The result of the experiment revealed
that the performance of the model drops at higher yaw angles compared to the frontal
faces; the 0.917 F1 score is calculated from 633 blink samples for >25◦ angles compared to
the 0.951 average F1 score from 10,962 frontal samples. In these cases, self-occlusion makes
the prediction harder for the network, which originated from the fact that, beyond the
imbalanced class distribution, only a fraction of the blink patterns have a high head pose
angle associated with them. In the case of positive pitch angles, the participants are looking
down. Most of the errors originated from this extreme head pose because the eyelids are
more visible, they move over a shorter distance, and the landmark-based features are less
precise considering the available resolution. We experienced a lower F1 score compared
to negative pitch angles (0.744 vs. 0.933). Higher performance metrics are expected for
samples when the monitored people are looking up; it is quite common for the camera to
be positioned slightly below the facial lines. Even with the low number of extreme samples
(9%), the performance is fairly consistent and acceptable across head pose variations.
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Figure 3. Head pose angle dependence of BlinkLinMulT in the case of blink presence detection
task. The head poses are predicted by 3DDFA_V2; the colors represent the F1 score calculated for the
blink presence task, which is also written within the boxes together with the number of samples (in
parenthesis) considered during the metric evaluations. F1 score cannot be calculated for those extreme
cases, where closed-eye samples are not available. Test samples from all 5 sequence datasets are used for
the experiment. Blinks can be predicted accurately in the case of frontal faces, and while the participant
is looking up. Performance slightly decreases when the monitored person is looking down.

5. Conclusions

We propose a transformer-based model for efficient eye blink detection, called Blin-
kLinMulT. Specifically, we modified the multimodal transformer with linear attention
(LinMulT), which fuses multiple inputs, such as RGB texture, iris and eye landmarks
features, and head pose angles.

Our contributions include the following: we propose BlinkLinMulT, a novel transformer-
based blink detection model that efficiently combines low- and high-level features from
video sequences using linear complexity attention mechanisms. We performed cross-dataset
evaluations to assess the robustness of BlinkLinMulT on unseen samples, demonstrating
that a single network trained on a union of datasets improves results across all datasets indi-
vidually. We showed how increased eye patch dimensionality of low-resolution eye patches
degrades the performance of current SOTA backbones, e.g., CLIP ViT-B/16 dependence,
and also presented the difference in performance when the motion dynamics are utilized
compared to frame-wise evaluations that ignore such an important relationship between
frames. We present a feature significance ablation study and showcase the effectiveness of
our proposed method under extreme head poses. Our results demonstrate comparable or
superior performance compared to state-of-the-art models on blink presence detection and
eye state recognition tasks, using public benchmark databases.

By leveraging the power of transformers for an efficient fusion of input features, our
model achieves accurate blink detection during challenging in-the-wild scenarios. The
promising results obtained on public benchmark datasets highlight the potential of our
approach for advancing the field of blink detection and its applications in various facial
analysis tasks.
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Appendix A

Appendix A.1. Backbone Within-Dataset Evaluations

Table A1. Performance of the backbone models on the CEW, ZJU, and RT-BENEimg datasets. 10-fold
cross-validation is performed on the CEW dataset, while, in the case of the ZJU and RT-BENEimg, we
evaluated on the test set. The highest F1 score is in bold, and the second highest score is underlined.

Database Backbone p R F1 AP

CEW

EyeNet 0.992 ± 0.007 0.987 ± 0.009 0.990 ± 0.006 0.999 ± 0.001
ResNet50 0.994 ± 0.008 0.993 ± 0.005 0.994 ± 0.003 0.999 ± 0.001

DenseNet121 0.998 ± 0.003 0.993 ± 0.005 0.995 ± 0.002 0.999 ± 0.001
CLIP ResNet50 0.996 ± 0.006 0.996 ± 0.004 0.996 ± 0.005 0.999 ± 0.001
CLIP ViT-B/16 0.996 ± 0.006 0.997 ± 0.004 0.996 ± 0.003 0.999 ± 0.001

ZJU

EyeNet 0.908 0.939 0.923 0.943
ResNet50 0.929 0.929 0.929 0.965

DenseNet121 0.938 0.917 0.927 0.959
CLIP ResNet50 0.901 0.883 0.892 0.941
CLIP ViT-B/16 0.950 0.883 0.915 0.957

RT-BENEimg

EyeNet 0.878 0.858 0.868 0.930
ResNet50 0.932 0.893 0.912 0.946

ResNet50-224px 0.929 0.837 0.881 0.918
DenseNet121 0.891 0.876 0.883 0.926

CLIP ResNet50 0.908 0.835 0.870 0.932
CLIP ViT-B/16 0.927 0.821 0.871 0.933

Appendix A.2. Backbone Cross-Dataset Evaluations

Table A2. Performance of the backbone models using cross-dataset evaluation. The highest F1
ratings and corresponding models are in bold. The second highest ratings and corresponding models
are underlined.

Model Train DB Test DB p R F1 AP

EyeNet CEW ZJU 0.749 0.766 0.758 0.847
ResNet50 CEW ZJU 0.687 0.749 0.717 0.813

DenseNet121 CEW ZJU 0.636 0.759 0.692 0.791

https://www.blinkingmatters.com/research
https://www.blinkingmatters.com/research
https://github.com/Tobias-Fischer/rt_gene
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Table A2. Cont.

Model Train DB Test DB p R F1 AP

CLIP-ResNet50 CEW ZJU 0.806 0.742 0.773 0.868
CLIP-ViT-B/16 CEW ZJU 0.819 0.705 0.758 0.857

EyeNet RT-BENEimg ZJU 0.683 0.766 0.722 0.822
ResNet50 RT-BENEimg ZJU 0.817 0.795 0.806 0.852

DenseNet121 RT-BENEimg ZJU 0.880 0.824 0.851 0.936
CLIP-ResNet50 RT-BENEimg ZJU 0.807 0.654 0.722 0.820
CLIP-ViT-B/16 RT-BENEimg ZJU 0.676 0.693 0.684 0.775

EyeNet ZJU CEW 0.433 1.000 0.604 0.499
ResNet50 ZJU CEW 0.540 0.822 0.652 0.668

DenseNet121 ZJU CEW 0.694 0.866 0.771 0.825
CLIP-ResNet50 ZJU CEW 0.474 0.968 0.636 0.565
CLIP-ViT-B/16 ZJU CEW 0.452 0.930 0.608 0.549

EyeNet RT-BENEimg CEW 0.811 0.784 0.797 0.859
ResNet50 RT-BENEimg CEW 0.881 0.907 0.894 0.950

DenseNet121 RT-BENEimg CEW 0.792 0.885 0.836 0.903
CLIP-ResNet50 RT-BENEimg CEW 0.693 0.880 0.775 0.793
CLIP-ViT-B/16 RT-BENEimg CEW 0.662 0.830 0.733 0.740

EyeNet ZJU RT-BENEimg 0.177 0.217 0.195 0.116
ResNet50 ZJU RT-BENEimg 0.459 0.554 0.502 0.497

DenseNet121 ZJU RT-BENEimg 0.636 0.680 0.657 0.666
CLIP-ResNet50 ZJU RT-BENEimg 0.098 0.452 0.161 0.098
CLIP-ViT-B/16 ZJU RT-BENEimg 0.132 0.619 0.217 0.124

EyeNet CEW RT-BENEimg 0.529 0.845 0.651 0.497
ResNet50 CEW RT-BENEimg 0.555 0.852 0.672 0.514

DenseNet121 CEW RT-BENEimg 0.624 0.801 0.701 0.740
CLIP-ResNet50 CEW RT-BENEimg 0.737 0.834 0.782 0.781
CLIP-ViT-B/16 CEW RT-BENEimg 0.559 0.782 0.652 0.558

Appendix A.3. Backbone Union Evaluations

Table A3. Performance of the backbone models using the union of multiple datasets. The highest F1
ratings and corresponding models are in bold. The second highest ratings and corresponding models
are underlined.

Model Train DB Test DB P R F1 AP

EyeNet Union CEW 0.974 0.955 0.965 0.995
ResNet50 Union CEW 0.994 0.987 0.990 0.999

DenseNet121 Union CEW 0.994 1.000 0.997 0.999
CLIP-ResNet50 Union CEW 0.899 0.905 0.902 0.961
CLIP-ViT-B/16 Union CEW 0.969 0.981 0.975 0.993

EyeNet Union ZJU 0.912 0.861 0.886 0.948
ResNet50 Union ZJU 0.920 0.900 0.910 0.961

DenseNet121 Union ZJU 0.914 0.954 0.933 0.956
CLIP-ResNet50 Union ZJU 0.819 0.859 0.838 0.899
CLIP-ViT-B/16 Union ZJU 0.872 0.917 0.894 0.957

EyeNet Union RT-BENEimg 0.913 0.901 0.907 0.954
ResNet50 Union RT-BENEimg 0.879 0.879 0.879 0.947

DenseNet121 Union RT-BENEimg 0.913 0.913 0.913 0.959
CLIP-ResNet50 Union RT-BENEimg 0.851 0.800 0.825 0.899
CLIP-ViT-B/16 Union RT-BENEimg 0.939 0.850 0.892 0.944
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Appendix A.4. Head Pose Angle Dependence of the Proposed BlinkLinMulT

Table A4. Blink presence prediction performance of the proposed BlinkLinMulT. Test samples from all
5 sequence datasets are used for the experiment. Yaw and pitch degrees are predicted by 3DDFA_V2.
Extreme yaw and pitch angles, when the participant is looking sideways or down, might cause
slightly decreased performance.

Orientation Angle Accuracy AP F1

Yaw

<−25◦ 0.991 0.990 0.960
[−25◦..0◦) 0.990 0.985 0.956
[0◦..25◦) 0.990 0.985 0.945

>25◦ 0.984 0.954 0.917

Pitch

<−25◦ 0.986 0.996 0.933
[−25◦..0◦) 0.985 0.973 0.930
[0◦..25◦) 0.992 0.988 0.957

>25◦ 0.951 0.800 0.744
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